Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Compositional disorder in trans- $\left[\mathrm{RhBr}_{0.26} \mathrm{Cl}_{0.74} \mathrm{H}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ $\left[\mathrm{B}\left(\mathbf{1}, \mathbf{2}-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)\right] \cdot \mathbf{C H}_{2} \mathrm{Cl}_{\mathbf{2}}$

Nicholas C. Norman, A. Guy Orpen, Michael J. Quayle* and Edward G. Robins

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England Correspondence e-mail: michael.j.quayle@umist.ac.uk

Received 27 August 1999
Accepted 21 October 1999

The structure of trans-(bromo/chloro)hydridotetrakis(trimethylphosphine)rhodium(III) bis(tetrabromopyrocatechol-ato- O, O^{\prime})borate dichloromethane solvate, $\left[\mathrm{RhCl}_{0.74} \mathrm{Br}_{0.26} \mathrm{H}-\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)_{4}\right]\left(\mathrm{C}_{12} \mathrm{BBr}_{8} \mathrm{O}_{4}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, is reported. The $\mathrm{Rh}^{\mathrm{III}}$ complex shows bromine/chlorine compositional disorder with a trans arrangement of the hydride and halide ligands. The anion has approximate $D_{2 d}$ symmetry, with a central spiro-B atom distorted from regular tetrahedral geometry by the small chelating $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles.

Comment

The compound trans- $\left[\mathrm{RhBr}_{0.26} \mathrm{Cl}_{0.74} \mathrm{H}\left(\mathrm{PMe}_{3}\right)_{4}\right][\mathrm{B}(1,2-$ $\left.\left.\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (I), was obtained as a by-product from the reaction between $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{4}\right] \mathrm{Cl}$ and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$. A number of structures of the bis(catecholato)borate anion, $\left[\mathrm{B}(\mathrm{cat})_{2}\right]^{-}\left(\mathrm{cat}=1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, have been reported both with
organic cations (Clegg, Scott et al., 1998) and with metal complex cations (Clegg et al., 1999), and this anion seems to be a favoured product in many reactions involving H (Bcat), $\mathrm{B}_{2}(\mathrm{cat})_{2}$ and $\mathrm{B}_{2}(\mathrm{cat})_{3}$.

(I)

The geometry of the anion in this salt is similar to those of the unsubstituted anion in previously reported structures. Thus, $\mathrm{B}-\mathrm{O}$ distances in (I) are in the range 1.453 (11)1.486 (11) $\AA\left\{c f .1 .452-1.519 \AA\right.$ in $\left[\mathrm{B}(\mathrm{cat})_{2}\right]^{-}$anions $\}$. The $\mathrm{O}-$ C distances $[1.330(9)-1.339(8) \AA$ A are similar to those in other $\left[\mathrm{B}(\mathrm{cat})_{2}\right]^{-}$anions $(1.338-1.375 \AA)$. The $\mathrm{B}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}$ distances in these tetrahedral anions are longer than those in the diborane(4) compound $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \quad[\mathrm{~B}-\mathrm{O}=$ 1.382 (2) -1.394 (2) \AA and $\mathrm{O}=1.386$ (2) -1.387 (2) \AA; Clegg et al., 1999], consistent with an increased coordination number and hybridization change at boron. The structure of $\mathrm{B}_{2}(1,2-$ $\left.\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$ has not been characterized to date. The coordination around boron is slightly elongated from tetrahedral with two small $\mathrm{O}-\mathrm{B}-\mathrm{O}$ chelating angles $[105.1$ (6) and $103.9(6)^{\circ}$]. The rings are close to planar [torsion angles $\mathrm{O} 1-$ $\mathrm{C} 51-\mathrm{C} 52-\mathrm{O} 2=4.1(11)^{\circ}$ and $\mathrm{O} 3-\mathrm{C} 61-\mathrm{C} 62-\mathrm{O} 4=$ $\left.0.9(9)^{\circ}\right]$. In other $\left[\mathrm{B}(\mathrm{cat})_{2}\right]^{-}$anions, slight folding is reported about the $\mathrm{O} \cdots \mathrm{O}$ vector, with dihedral angles between the BO_{2} and $\mathrm{O}_{2} \mathrm{C}_{2}$ planes of up to $13.9(2)^{\circ}$ (Clegg et al., 1999), however, in the anion of (I) these angles are only 2.4 (2) and 4.6 (2) ${ }^{\circ}$. The anion has approximate $D_{2 d}$ symmetry (see Fig. 1).

The hydride and halide ligands in the cation of (I), which contains four phosphine ligands, are trans to each other, consistent with the relative high and low trans influences of hydride and halide ligands, respectively. Compositional disorder was observed in the halide site and was modelled with

Figure 1
The structure of the anion and cation of (I) drawn at the 50% probability level. H atoms bonded to C have been omitted for clarity.

Figure 2
The packing of anions of (I) showing $\mathrm{Br} \cdots \mathrm{Br}$ interactions. [Symmetry codes: (i) $-x,-\frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-\frac{1}{2}-x, 2-y, \frac{1}{2}+z$; (iii) $-\frac{1}{2}+x, \frac{5}{2}-y$, $1-z$.]
components of bromine and chlorine in the ratio ca 3:1 (see Experimental). Presumably the source of the bromine here is the catecholate $1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}$. The $\mathrm{Rh}-\mathrm{PMe}_{3}$ distances [2.322 (2)-2.357 (2) \AA] are similar to those of other $\mathrm{Rh}^{\text {III }}$ cations [2.281 (3)-2.397 (3) Å; Marder et al., 1987; Westcott et al., 1993]. Ignoring the $\mathrm{Br} / \mathrm{Cl}$ disorder, the geometry around rhodium is octahedral with cis $-\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ bond angles in the range 90.57 (8)-91.45 (8) ${ }^{\circ}$, though the trans $-\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ angles are somewhat distorted from linearity $[\mathrm{P} 1-\mathrm{Rh} 1-\mathrm{P} 3$ 166.27 (9) and $\mathrm{P} 2-\mathrm{Rh} 1-\mathrm{P} 4159.16$ (9) ${ }^{\circ}$].

The $\left[\mathrm{B}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}\right]^{-}$anions form an intricate packing supported by $\mathrm{Br} \cdots \mathrm{Br}$ interactions. The interactions, shown in Fig. 2, include the unique contacts: $\mathrm{Br} 1 \cdots \mathrm{Br} 6^{\mathrm{i}}=3.656$ (2), $\mathrm{Br} 5 \cdots \mathrm{Br} 3^{\mathrm{ii}}=3.287(2), \quad \mathrm{Br} 4 \cdots \mathrm{Br} 8^{\mathrm{iii}}=3.617$ (1) and Br8 \cdots Br1 $1^{\text {iii }}=3.519$ (1) \AA [symmetry codes: (i) $-x, y-\frac{1}{2}$, $\frac{3}{2}-z$; (ii) $-\frac{1}{2}-x, 2-y, \frac{1}{2}+z$; (iii) $\left.x-\frac{1}{2}, \frac{5}{2}-y, 1-z\right]$ (van der Waals radius of bromine $=1.85 \AA$; Bondi, 1964). The shortest published $\mathrm{Br} \cdots \mathrm{Br}$ interaction is $3.202(3) \AA$ in $\mathrm{CPh}_{3} \mathrm{Br}$ (Desiraju, 1989, and references therein). Database studies on $\mathrm{Cl} \cdots \mathrm{Cl}, \mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{I} \cdots \mathrm{I}$ interactions have shown that these contacts are generally of two types (Ramasubbu et al., 1986). Either both $\mathrm{C}-X \cdots X$ ($X=$ halide) angles are equal and around $160(10)^{\circ}$ or one of the angles is about 175° and the other around 80°. As shown in Table 1, both of these types are observed. That these contacts have specific directional effects appears to dominate in the packing in (I), whereas classic hydrogen bonding between organic cations and the O atoms in $\left[\mathrm{B}(\mathrm{cat})_{2}\right]^{-}$, forming ion pairs, is found in salts of this anion (Clegg, Scott et al., 1998).

Experimental

$\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$ was prepared as described by Clegg, Lawlor et al. (1998). Compound (I) was obtained as a minor by-product from the reaction between $\left[\mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{4}\right] \mathrm{Cl}$ and $\mathrm{B}_{2}\left(1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{Br}_{4}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
after the addition of pentane. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: multiplet at δ -10.6 p.p.m; ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 12.3$ p.p.m. Crystals of (I) suitable for X-ray diffraction were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with hexane at 243 K .

Crystal data

$\left[\mathrm{RhCl}_{0.74} \mathrm{Br}_{0.26} \mathrm{H}\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)_{4}\right]$
$\left(\mathrm{C}_{12} \mathrm{BBr}_{8} \mathrm{O}_{4}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1398.57$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=13.0140$ (9) \AA §
$b=16.3990(15) \AA$
$c=20.726(3) \AA$
$V=4423.3$ (8) \AA^{3}
$Z=4$
$D_{x}=2.100 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 462 reflections
$\theta=5-25^{\circ}$
$\mu=8.191 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Rhomb, pale yellow
$0.80 \times 0.30 \times 0.30 \mathrm{~mm}$

Data collection

Siemens SMART area-detector diffractometer
ω rotation with narrow frame scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.026, T_{\text {max }}=0.086$
28033 measured reflections
5613 independent reflections (plus
4511 Friedel-related reflections)
7391 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=27.51^{\circ}$
$h=-16 \rightarrow 16$
$k=-19 \rightarrow 21$
$l=-15 \rightarrow 26$
Intensity decay: none

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0570 P)^{2}\right]$ where
$P=\left[\max \left(F_{o}^{2}, 0\right)+2 F_{c}^{2}\right] / 3$
$(\Delta / \sigma)_{\max }=-0.002$
$\Delta \rho_{\text {max }}=1.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.10 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=0.486(10)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Rh1-P4	2.322 (2)	Br6-C64	1.883 (9)
Rh1-P2	2.345 (2)	Br7-C65	1.886 (7)
Rh1-P3	2.346 (2)	Br8-C66	1.848 (9)
Rh1-P1	2.357 (2)	B1-O2	1.453 (11)
Rh1-Cl10	2.507 (14)	B1-O3	1.478 (10)
Rh1-Br10	2.531 (12)	B1-O1	1.482 (10)
Br1-C53	1.889 (7)	B1-O4	1.486 (11)
Br2-C54	1.903 (9)	O1-C51	1.335 (9)
Br3-C55	1.891 (8)	O2-C52	1.330 (9)
Br4-C56	1.879 (7)	O3-C61	1.333 (8)
Br5-C63	1.887 (8)	O4-C62	1.339 (8)
$\mathrm{P} 4-\mathrm{Rh} 1-\mathrm{P} 2$	159.16 (9)	C43-P4-C42	96.3 (5)
P4-Rh1-P3	91.04 (8)	C41-P4-C42	104.0 (5)
$\mathrm{P} 2-\mathrm{Rh} 1-\mathrm{P} 3$	91.45 (8)	$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 3$	112.2 (7)
P4-Rh1-P1	90.57 (8)	$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 1$	105.1 (6)
$\mathrm{P} 2-\mathrm{Rh} 1-\mathrm{P} 1$	91.88 (8)	$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 1$	111.3 (8)
P3-Rh1-P1	166.27 (9)	$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 4$	112.3 (8)
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 13$	104.6 (4)	$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 4$	103.9 (6)
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 12$	103.8 (6)	O1-B1-O4	112.4 (7)
$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 12$	96.0 (5)	C53-Br1 $\cdots \mathrm{Br} 8^{\text {i }}$	156.0 (3)
C21-P2-C23	101.7 (5)	C53-Br1 \cdots Br6 ${ }^{\text {ii }}$	84.9 (2)
C21-P2-C22	101.8 (6)	C55-Br3 $\cdots \mathrm{Br} 5^{\text {iii }}$	168.3 (3)
C23-P2-C22	97.8 (5)	C56-Br4 $\cdots \mathrm{Br}^{\text {iv }}$	153.6 (3)
C32-P3-C31	102.5 (5)	C63-Br5 $\cdots \mathrm{Br}^{\text {v }}$	137.1 (3)
C32-P3-C33	103.5 (5)	C64-Br6 $\cdots \mathrm{Br}^{\text {vi }}$	176.5 (3)
C31-P3-C33	99.9 (4)	C66-Br8 $\cdots \mathrm{Br}^{\text {iv }}$	111.9 (2)
C43-P4-C41	104.2 (4)	C66-Br8 $\cdots \mathrm{Br} 4^{\text {i }}$	116.4 (2)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{5}{2}-y, 1-z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (iii) $-\frac{1}{2}-x, 2-y, z-\frac{1}{2}$; (iv)
$x-\frac{1}{2}, \frac{5}{2}-y, 1-z ;$ (v) $-\frac{1}{2}-x, 2-y, \frac{1}{2}+z ;$ (vi) $-x, \frac{1}{2}+y, \frac{3}{2}-z$. $x-\frac{1}{2}, \frac{5}{2}-y, 1-z ;$ (v) $-\frac{1}{2}-x, 2-y, \frac{1}{2}+z ;$ (vi) $-x, \frac{1}{2}+y, \frac{3}{2}-z$.

The data showed inversion twinning with the Flack parameter (Flack, 1983) refining to 0.486 (10).

The position of the hydride was located in the electron-density difference map and was refined with fixed coordinates and $U_{\text {iso }}$. Other H atoms were constrained to idealized geometries and assigned isotropic displacement parameters $1.5 U_{\text {eq }}$ of their attached carbon (or $1.2 U_{\text {eq }}$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Compositional disorder was suspected in the halide as unaccounted electron density was present when it was modelled as pure chloride. Both components of the disorder were refined anisotropically and the site occupancies refined to 0.74 (1) and 0.26 (1) for Cl and Br , respectively. The $\mathrm{Rh}-\mathrm{Cl}$ and $\mathrm{Rh}-\mathrm{Br}$ distances were constrained to standard bond distances $(\mathrm{Rh}-\mathrm{Cl} 2.44$ and $\mathrm{Rh}-\mathrm{Br}$ $2.56 \AA$; Orpen et al., 1989) and the anisotropic displacement parameters of the Cl and Br atoms were constrained to be the same.

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule was disordered and modelled with two images of equal occupancy ratio, with their C atom in the same location. The $\mathrm{C}-\mathrm{Cl}$ distances were constrained.

Data collection: SMART (Siemens, 1995a); cell refinement: SAINT (Siemens, 1995a); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1995b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank EPSRC for studentships (MJQ and EGR), Laporte plc and the Royal Society for additional funds.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1060). Services for accessing these data are described at the back of the journal.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Clegg, W., Elsegood, M. R. J., Scott, A. J., Marder, T. B., Dai, C., Norman, N. C., Pickett, N. L. \& Robins, E. G. (1999). Acta Cryst. C55, 733-739.
Clegg, W., Lawlor, F. J., Lesley, G., Marder, T. B., Norman, N. C., Orpen, A. G., Quayle, M. J., Rice, C. R., Scott, A. J. \& Souza, F. E. S. (1998). J. Organomet. Chem. 550, 183-192.
Clegg, W., Scott, A. J., Lawlor, F. J., Norman, N. C., Marder, T. B., Dai, C. \& Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 179-185. Amsterdam: Elsevier.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Marder, T. B., Zargarian, D., Calabrese, J. C., Herskovitz, T. H. \& Milstein, D. (1987). Chem. Commun. pp. 1484-1485.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Ramasubbu, N., Parthasarathy, R. \& Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1995a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995b). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Westcott, S. A., Blau, H. P., Marder, T. B., Baker, R. T. \& Calabrese, J. C. (1993). Inorg. Chem. 32, 2175-2182.

